top of page

Towards Robust Mammography-Based Models for Breast Cancer Risk

Adam Yala, Peter G Mikhael, Fredrik Strand, Gigin Lin, Kevin Smith, Yung-Liang Wan, Leslie Lamb, Kevin Hughes, Constance Lehman, Regina Barzilay
Science Translational Medicine 2020.

git.png

A Deep Learning Model to Triage Screening Mammograms: A Simulation Study

Adam Yala, Tal Schuster, Randy Miles, Regina Barzilay, Constance Lehman

RSNA Radiology, 2019

git.png

A Deep Learning Mammography-based Model for Improved Breast Cancer Risk Prediction

Adam Yala , Constance Lehman, Tal Schuster, Tally Portnoi, Regina Barzilay 

RSNA Radiology 2019.

Top 10 RSNA Radiology papers by Downloads 2018. Top 10 RSNA Radiology papers by Altmetric 2018.

git.png

Do Neural Information Extraction Algorithms Generalize Across Institutions?

Enrico Santus, Adam Yala, Donald Peck, Rufina Soomro, Naveen Faridi, Isra Mamshad, Rong Tang, Conor R. Lanahan, Regina Barzilay, and Kevin Hughes

JCO Clinical Informatics 2019

git.png

Deep Learning Model to Assess Cancer Risk on the Basis of a Breast MR Image Alone

Tally Portnoi, Adam Yala, Tal Schuster, Regina Barzilay
American Journal of Roentgenology 2019.
git.png

Mammographic Breast Density Assessment Using Deep Learning: Clinical Implementation

Constance D. Lehman , Adam Yala, Tal Schuster, Brian Dontchos, Manisha Bahl, Kyle Swanson, Regina Barzilay
RSNA Radiology 2018.
Top 10 RSNA Radiology papers by Downloads 2018.
git.png
Using machine learning to parse breast pathology reports
Adam Yala, Regina Barzilay, Laura Salama, Molly Griffin, Grace Sollender, Constance Lehman, Alphonse Taghian, Kevin S. Hughes, et al
Breast Cancer Research and Treatment 2016
git.png

Improving Information Extraction by Acquiring External Evidence with Reinforcement Learning

Karthik Narasimhan, Adam Yala, Regina Barzilay

Proceedings of EMNLP 2016

Best Paper Award

git.png
bottom of page